Pinkgo(토론 | 기여)님의 2025년 9월 16일 (화) 01:24 판 (새 문서: 분류:계산 이론 개론분류:컴퓨터 공학 상위 문서: 계산 이론 개론 ==개요== 해당 문서에서는 유한 오토마타(FA)를 통해 검증 가능한 언어를 의미하는 정규 언어에 대해 다룬다. ==Definition of Regular Languages== 어떤 언어 R이 정규 언어(regular language) 라고 불리려면, 어떤 Finite...)
해당 문서에서는 유한 오토마타(FA)를 통해 검증 가능한 언어를 의미하는 정규 언어에 대해 다룬다.
Definition of Regular Languages
어떤 언어 R이 정규 언어(regular language) 라고 불리려면, 어떤 유한 오토마타(FA) M이 R을 인식해야 한다. 이는 아래와 같다:
[math]\displaystyle{ \exists M. M = FA \land M\,\, recognizes\,\,R }[/math]
이때 이를 증명하기 위해서는 아래와 같은 절차를 걸친다:
특정한 FA [math]\displaystyle{ M=(Q,\Sigma,\delta,q_0,F) }[/math]를 정의한다.
M이 FA임을 보인다.(이는 M이 FA의 정의에 맞게 잘 구성되었는지를 확인하는 방식이다.)
M이 언어 R을 인식(recognize)하는 것을 보인다. 즉,
a) 모든 문자열 [math]\displaystyle{ w\in \Sigma^* }[/math]에 대해, [math]\displaystyle{ w \in R \Rightarrow M }[/math]이 [math]\displaystyle{ w }[/math]를 수용(accept)
b) 모든 문자열 [math]\displaystyle{ w\in \Sigma^* }[/math]에 대해, M이 [math]\displaystyle{ w }[/math]를 수용 [math]\displaystyle{ \Rightarrow w \in R }[/math]
(a), (b)를 모두 만족해야 정확히 [math]\displaystyle{ L(M)=R }[/math][1]임을 보일 수 있다.