메뉴 여닫기
환경 설정 메뉴 여닫기
개인 메뉴 여닫기
로그인하지 않음
지금 편집한다면 당신의 IP 주소가 공개될 수 있습니다.

연습장: 두 판 사이의 차이

noriwiki
Pinkgo (토론 | 기여)
Pinkgo (토론 | 기여)
14번째 줄: 14번째 줄:


==Ex. 2==
==Ex. 2==
Existence)<br>
By definition, the domain of <math>w</math> is the finite initial segment of <math>\mathbb{N}</math>.<br>
If the domain is <math>\empty</math>, then there is no position <math>i \in \mathbb{N}</math> where the <math>w</math> is defined.<br>
In this situation, the length of the string <math>w</math> is 0.<br>
Hence, there is a string <math>w</math> s.t. <math>|w| = 0</math>.


<math></math>
Uniquness)<br>
<math></math>
Suppose that there is two sets <math>u,\,\, v</math> s.t. <math>|u| = 0,\,\, |v| = 0</math>.<br>
<math></math>
Then <math>u,\,\, v</math> are not defined at any index, so both are empty relation, subset of <math>\mathbb{N} \times \Sigma</math>.<br>
So <math>u,\,\, v</math> are both empty, which means <math>u = v</math>.
 
Hence, there is the a unique empty string <math>w</math> s.t. <math>|w| = 0</math>, and we can define <math>\epsilon</math> as the empty string <math>w</math>
 
==Ex. 3==
<math></math>
<math></math>
<math></math>
<math></math>

2025년 9월 23일 (화) 02:35 판

Ex. 1

Existence)
Let [math]\displaystyle{ w }[/math] be any string over an [math]\displaystyle{ \Sigma }[/math].
By the definition, the domain of [math]\displaystyle{ w }[/math] is a finite initial segment of [math]\displaystyle{ \mathbb{N} }[/math].
This means that [math]\displaystyle{ \exist n \in \mathbb{N} }[/math] s.t. w is defined at [math]\displaystyle{ i \leftrightarrow i \lt n }[/math]

Uniquness)
Suppose that [math]\displaystyle{ \exist n,\,\, m }[/math] s.t. both satisfy the condition for the string [math]\displaystyle{ w }[/math].
That means, w is defined at position [math]\displaystyle{ i }[/math] if and only if [math]\displaystyle{ (i \lt n) \land (i \lt m) }[/math].
By definition, [math]\displaystyle{ \{i \in \mathbb{N}|i \lt n\} }[/math] and [math]\displaystyle{ \{i \in \mathbb{N}|i \lt m\} }[/math] are both domain of [math]\displaystyle{ w }[/math], which means they are same set.
So the only way that [math]\displaystyle{ \{i \in \mathbb{N}|i \lt n\} }[/math] and [math]\displaystyle{ \{i \in \mathbb{N}|i \lt m\} }[/math] are same is their endpoints are same. Therefore, [math]\displaystyle{ n = m }[/math].

Hence, there exists a unique natural number [math]\displaystyle{ n }[/math] with the desired property.

Ex. 2

Existence)
By definition, the domain of [math]\displaystyle{ w }[/math] is the finite initial segment of [math]\displaystyle{ \mathbb{N} }[/math].
If the domain is [math]\displaystyle{ \empty }[/math], then there is no position [math]\displaystyle{ i \in \mathbb{N} }[/math] where the [math]\displaystyle{ w }[/math] is defined.
In this situation, the length of the string [math]\displaystyle{ w }[/math] is 0.
Hence, there is a string [math]\displaystyle{ w }[/math] s.t. [math]\displaystyle{ |w| = 0 }[/math].

Uniquness)
Suppose that there is two sets [math]\displaystyle{ u,\,\, v }[/math] s.t. [math]\displaystyle{ |u| = 0,\,\, |v| = 0 }[/math].
Then [math]\displaystyle{ u,\,\, v }[/math] are not defined at any index, so both are empty relation, subset of [math]\displaystyle{ \mathbb{N} \times \Sigma }[/math].
So [math]\displaystyle{ u,\,\, v }[/math] are both empty, which means [math]\displaystyle{ u = v }[/math].

Hence, there is the a unique empty string [math]\displaystyle{ w }[/math] s.t. [math]\displaystyle{ |w| = 0 }[/math], and we can define [math]\displaystyle{ \epsilon }[/math] as the empty string [math]\displaystyle{ w }[/math]

Ex. 3

[math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]