다른 명령
새 문서: ==Ex. 1== Existence)<br> Let <math>w</math> be any string over an <math>\Sigma</math>.<br> By the definition, the domain of <math>w</math> is a finite initial segment of <math>\mathbb{N}</math>.<br> This means that <math>\exist n \in \mathbb{N} </math> s.t. w is defined at <math>i \leftrightarrow i < n</math> Uniquness)<br> Suppose that <math>\exist n,\,\, m</math> s.t. both satisfy the condition for the string <math>w</math>.<br> That means, w is defined at position <math>i</m... |
|||
| 12번째 줄: | 12번째 줄: | ||
Hence, there exists a unique natural number <math>n</math> with the desired property. | Hence, there exists a unique natural number <math>n</math> with the desired property. | ||
==Ex. 2== | |||
<math></math> | <math></math> | ||
<math></math> | <math></math> | ||
2025년 9월 23일 (화) 02:01 판
Ex. 1
Existence)
Let [math]\displaystyle{ w }[/math] be any string over an [math]\displaystyle{ \Sigma }[/math].
By the definition, the domain of [math]\displaystyle{ w }[/math] is a finite initial segment of [math]\displaystyle{ \mathbb{N} }[/math].
This means that [math]\displaystyle{ \exist n \in \mathbb{N} }[/math] s.t. w is defined at [math]\displaystyle{ i \leftrightarrow i \lt n }[/math]
Uniquness)
Suppose that [math]\displaystyle{ \exist n,\,\, m }[/math] s.t. both satisfy the condition for the string [math]\displaystyle{ w }[/math].
That means, w is defined at position [math]\displaystyle{ i }[/math] if and only if [math]\displaystyle{ (i \lt n) \land (i \lt m) }[/math].
By definition, [math]\displaystyle{ \{i \in \mathbb{N}|i \lt n\} }[/math] and [math]\displaystyle{ \{i \in \mathbb{N}|i \lt m\} }[/math] are both domain of [math]\displaystyle{ w }[/math], which means they are same set.
So the only way that [math]\displaystyle{ \{i \in \mathbb{N}|i \lt n\} }[/math] and [math]\displaystyle{ \{i \in \mathbb{N}|i \lt m\} }[/math] are same is their endpoints are same. Therefore, [math]\displaystyle{ n = m }[/math].
Hence, there exists a unique natural number [math]\displaystyle{ n }[/math] with the desired property.
Ex. 2
[math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]