연습장: 두 판 사이의 차이

youngwiki
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
41번째 줄: 41번째 줄:


==Ex. 4==
==Ex. 4==
</math><br>
Existence)<br>
Existence)<br>
<math>|w| = 1</math> means that the domain of <math>w</math> is <math>\{1\}</math>.<br>
<math>|w| = 1</math> means that the domain of <math>w</math> is <math>\{1\}</math>.<br>
50번째 줄: 49번째 줄:


Uniquness)<br>
Uniquness)<br>
Suppose <math>u,\,\,v</math> are string, and <math>(|u|=|v|=1)\land (u</math>@<math>0 = v</math>@<math>0 = x, s.t. x \in \Sigma)</math>
Suppose <math>u,\,\,v</math> are string, and <math>(|u|=|v|=1)\land (u</math>@<math>0 = v</math>@<math>0 = x, s.t. x \in \Sigma)</math><br>
Then, the domain of both string is <math>\{1\}</math>, and the alphabet corresponding to index 0 is <math>x</math> for both string.
Then, the domain of both string is <math>\{1\}</math>, and the alphabet corresponding to index 0 is <math>x</math> for both string.
Hence, <math>u = v = \{(1, x)\}</math>.
Hence, <math>u = v = \{(1, x)\}</math>.
57번째 줄: 56번째 줄:


==Ex. 5==
==Ex. 5==
<math>uv = \{(i,x)|(i,x)\in u\} \cup \{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\}</math>
==Ex. 6==
(a)<br>
Let <math>\epsilon = \empty</math>.<br>
By the definition, <math>u\epsilon = \{(i,x)|(i,x)\in u\} \cup \{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in \empty\} = \{(i,x)|(i,x)\in u\} \cup \empty = \{(i,x)|(i,x)\in u\} = u</math><br>
In the same way, <math>\epsilon u = \{(i,x)|(i,x)\in \empty\} \cup \{(</math><math>|</math><math>\empty</math><math>|</math><math>+j,y)|(j,y)\in u\} = \empty \cup \{(j,y)|(j,y)\in u\} = \{(j,y)|(j,y)\in u\} = u</math>
(b)<br>
<math>(uv)w
= (\{(i,x)|(i,x)\in u\} \cup
\{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\}) \cup
\{(</math><math>|</math><math>uv</math><math>|</math><math>+k,z)|(k,z)\in v\}</math><br><math>
= uvw
= \{(i,x)|(i,x)\in u\} \cup
\{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\} \cup
\{(</math><math>|</math><math>uv</math><math>|</math><math>+k,z)|(k,z)\in v\}</math><br><math>
= u(vw)
= \{(i,x)|(i,x)\in u\} \cup (
\{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\} \cup
\{(</math><math>|</math><math>uv</math><math>|</math><math>+k,z)|(k,z)\in v\})</math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>
<math></math>

2025년 9월 23일 (화) 05:11 기준 최신판

Ex. 1

Existence)
Let w be any string over an Σ.
By the definition, the domain of w is a finite initial segment of .
This means that n s.t. w is defined at ii<n

Uniquness)
Suppose that n,m s.t. both satisfy the condition for the string w.
That means, w is defined at position i if and only if (i<n)(i<m).
By definition, {i|i<n} and {i|i<m} are both domain of w, which means they are same set.
So the only way that {i|i<n} and {i|i<m} are same is their endpoints are same. Therefore, n=m.

Hence, there exists a unique natural number n with the desired property.

Ex. 2

Existence)
By definition, the domain of w is the finite initial segment of .
If the domain is , then there is no position i where the w is defined.
In this situation, the length of the string w is 0.
Hence, there is a string w s.t. |w|=0.

Uniquness)
Suppose that there is two sets u,v s.t. |u|=0,|v|=0.
Then u,v are not defined at any index, so both are empty relation, subset of ×Σ.
So u,v are both empty, which means u=v.

Hence, there is the a unique empty string w s.t. |w|=0, and we can define ϵ as the empty string w

Ex. 3

Let w be any string over an Σ.
Existence)
By the definition of w, w is defined at any position i s.t. (i)(i|w|).
Therefore, if i<|w|, then xΣ.(i,x)w.

Uniquness)
By the definition of w, relation w×Σ is partial function.
So there is only one output xΣ when i is given s.t. i<|w|i.

Hence, For all strings w and for all i, if i<|w|, then there exists a unique xΣ s.t. (i,x)w.

Ex. 4

Existence)
|w|=1 means that the domain of w is {1}.
So, let relation w be w={(1,x)}×Σ, s.t. xΣ.
First, w is a partial function, since for the input 1, there is only one output value.
Second, the domain of w is {1}, which is the finite initial segment of . Hence, there is w which satisfy given proposition.

Uniquness)
Suppose u,v are string, and (|u|=|v|=1)(u@0=v@0=x,s.t.xΣ)
Then, the domain of both string is {1}, and the alphabet corresponding to index 0 is x for both string. Hence, u=v={(1,x)}.

Thus, for every xΣ, there exists a unique string w s.t. |w|=1 and w@0=x.

Ex. 5

uv={(i,x)|(i,x)u}{(|u|+j,y)|(j,y)v}

Ex. 6

(a)
Let ϵ=.
By the definition, uϵ={(i,x)|(i,x)u}{(|u|+j,y)|(j,y)}={(i,x)|(i,x)u}={(i,x)|(i,x)u}=u
In the same way, ϵu={(i,x)|(i,x)}{(||+j,y)|(j,y)u}={(j,y)|(j,y)u}={(j,y)|(j,y)u}=u

(b)
(uv)w=({(i,x)|(i,x)u}{(|u|+j,y)|(j,y)v}){(|uv|+k,z)|(k,z)v}
=uvw={(i,x)|(i,x)u}{(|u|+j,y)|(j,y)v}{(|uv|+k,z)|(k,z)v}
=u(vw)={(i,x)|(i,x)u}({(|u|+j,y)|(j,y)v}{(|uv|+k,z)|(k,z)v})