연습장: 두 판 사이의 차이
새 문서: ==Ex. 1== Existence)<br> Let <math>w</math> be any string over an <math>\Sigma</math>.<br> By the definition, the domain of <math>w</math> is a finite initial segment of <math>\mathbb{N}</math>.<br> This means that <math>\exist n \in \mathbb{N} </math> s.t. w is defined at <math>i \leftrightarrow i < n</math> Uniquness)<br> Suppose that <math>\exist n,\,\, m</math> s.t. both satisfy the condition for the string <math>w</math>.<br> That means, w is defined at position <math>i</m... |
|||
| (같은 사용자의 중간 판 7개는 보이지 않습니다) | |||
| 12번째 줄: | 12번째 줄: | ||
Hence, there exists a unique natural number <math>n</math> with the desired property. | Hence, there exists a unique natural number <math>n</math> with the desired property. | ||
<math></math> | |||
<math></math> | ==Ex. 2== | ||
<math></math> | Existence)<br> | ||
By definition, the domain of <math>w</math> is the finite initial segment of <math>\mathbb{N}</math>.<br> | |||
If the domain is <math>\empty</math>, then there is no position <math>i \in \mathbb{N}</math> where the <math>w</math> is defined.<br> | |||
In this situation, the length of the string <math>w</math> is 0.<br> | |||
Hence, there is a string <math>w</math> s.t. <math>|w| = 0</math>. | |||
Uniquness)<br> | |||
Suppose that there is two sets <math>u,\,\, v</math> s.t. <math>|u| = 0,\,\, |v| = 0</math>.<br> | |||
Then <math>u,\,\, v</math> are not defined at any index, so both are empty relation, subset of <math>\mathbb{N} \times \Sigma</math>.<br> | |||
So <math>u,\,\, v</math> are both empty, which means <math>u = v</math>. | |||
Hence, there is the a unique empty string <math>w</math> s.t. <math>|w| = 0</math>, and we can define <math>\epsilon</math> as the empty string <math>w</math> | |||
==Ex. 3== | |||
Let <math>w</math> be any string over an <math>\Sigma</math>.<br> | |||
Existence)<br> | |||
By the definition of <math>w</math>, <math>w</math> is defined at any position i s.t. <math>(i \in \mathbb{N}) \land (i \in |w|)</math>.<br> | |||
Therefore, if <math>i < |w| </math>, then <math>\exist x \in \Sigma. (i,x)\in w</math>. | |||
Uniquness)<br> | |||
By the definition of <math>w</math>, relation <math>w \subseteq \mathbb{N} \times \Sigma</math> is partial function.<br> | |||
So there is only one output <math>x \in \Sigma</math> when i is given s.t. <math>i < |w| \land i \in \mathbb{N}</math>. | |||
Hence, For all strings <math>w</math> and for all <math>i \in \mathbb{N}</math>, if <math>i < |w|</math>, then there exists a | |||
unique <math>x \in \Sigma</math> s.t. <math>(i, x) \in w</math>. | |||
==Ex. 4== | |||
Existence)<br> | |||
<math>|w| = 1</math> means that the domain of <math>w</math> is <math>\{1\}</math>.<br> | |||
So, let relation <math>w</math> be <math>w = \{(1, x)\} \subseteq \mathbb{N} \times \Sigma </math>, s.t. <math>x \in \Sigma</math>.<br> | |||
First, <math>w</math> is a partial function, since for the input 1, there is only one output value.<br> | |||
Second, the domain of <math>w</math> is <math>\{1\}</math>, which is the finite initial segment of <math>\mathbb{N}</math>. | |||
Hence, there is <math>w</math> which satisfy given proposition. | |||
Uniquness)<br> | |||
Suppose <math>u,\,\,v</math> are string, and <math>(|u|=|v|=1)\land (u</math>@<math>0 = v</math>@<math>0 = x, s.t. x \in \Sigma)</math><br> | |||
Then, the domain of both string is <math>\{1\}</math>, and the alphabet corresponding to index 0 is <math>x</math> for both string. | |||
Hence, <math>u = v = \{(1, x)\}</math>. | |||
Thus, for every <math>x \in \Sigma</math>, there exists a unique string <math>w</math> s.t. <math>|w|=1</math> and <math>w</math>@<math>0=x</math>. | |||
==Ex. 5== | |||
<math>uv = \{(i,x)|(i,x)\in u\} \cup \{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\}</math> | |||
==Ex. 6== | |||
(a)<br> | |||
Let <math>\epsilon = \empty</math>.<br> | |||
By the definition, <math>u\epsilon = \{(i,x)|(i,x)\in u\} \cup \{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in \empty\} = \{(i,x)|(i,x)\in u\} \cup \empty = \{(i,x)|(i,x)\in u\} = u</math><br> | |||
In the same way, <math>\epsilon u = \{(i,x)|(i,x)\in \empty\} \cup \{(</math><math>|</math><math>\empty</math><math>|</math><math>+j,y)|(j,y)\in u\} = \empty \cup \{(j,y)|(j,y)\in u\} = \{(j,y)|(j,y)\in u\} = u</math> | |||
(b)<br> | |||
<math>(uv)w | |||
= (\{(i,x)|(i,x)\in u\} \cup | |||
\{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\}) \cup | |||
\{(</math><math>|</math><math>uv</math><math>|</math><math>+k,z)|(k,z)\in v\}</math><br><math> | |||
= uvw | |||
= \{(i,x)|(i,x)\in u\} \cup | |||
\{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\} \cup | |||
\{(</math><math>|</math><math>uv</math><math>|</math><math>+k,z)|(k,z)\in v\}</math><br><math> | |||
= u(vw) | |||
= \{(i,x)|(i,x)\in u\} \cup ( | |||
\{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\} \cup | |||
\{(</math><math>|</math><math>uv</math><math>|</math><math>+k,z)|(k,z)\in v\})</math> | |||
<math></math> | <math></math> | ||
<math></math> | <math></math> | ||
2025년 9월 23일 (화) 05:11 기준 최신판
Ex. 1
Existence)
Let be any string over an .
By the definition, the domain of is a finite initial segment of .
This means that s.t. w is defined at
Uniquness)
Suppose that s.t. both satisfy the condition for the string .
That means, w is defined at position if and only if .
By definition, and are both domain of , which means they are same set.
So the only way that and are same is their endpoints are same. Therefore, .
Hence, there exists a unique natural number with the desired property.
Ex. 2
Existence)
By definition, the domain of is the finite initial segment of .
If the domain is , then there is no position where the is defined.
In this situation, the length of the string is 0.
Hence, there is a string s.t. .
Uniquness)
Suppose that there is two sets s.t. .
Then are not defined at any index, so both are empty relation, subset of .
So are both empty, which means .
Hence, there is the a unique empty string s.t. , and we can define as the empty string
Ex. 3
Let be any string over an .
Existence)
By the definition of , is defined at any position i s.t. .
Therefore, if , then .
Uniquness)
By the definition of , relation is partial function.
So there is only one output when i is given s.t. .
Hence, For all strings and for all , if , then there exists a unique s.t. .
Ex. 4
Existence)
means that the domain of is .
So, let relation be , s.t. .
First, is a partial function, since for the input 1, there is only one output value.
Second, the domain of is , which is the finite initial segment of .
Hence, there is which satisfy given proposition.
Uniquness)
Suppose are string, and @@
Then, the domain of both string is , and the alphabet corresponding to index 0 is for both string.
Hence, .
Thus, for every , there exists a unique string s.t. and @.
Ex. 5
Ex. 6
(a)
Let .
By the definition,
In the same way,
(b)