익명 사용자
로그인하지 않음
계정 만들기
로그인
youngwiki
검색
연습장 문서 원본 보기
youngwiki
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
원본 보기
역사
←
연습장
문서 편집 권한이 없습니다. 다음 이유를 확인해주세요:
요청한 명령은 다음 권한을 가진 사용자에게 제한됩니다:
사용자
.
문서의 원본을 보거나 복사할 수 있습니다.
==Ex. 1== Existence)<br> Let <math>w</math> be any string over an <math>\Sigma</math>.<br> By the definition, the domain of <math>w</math> is a finite initial segment of <math>\mathbb{N}</math>.<br> This means that <math>\exist n \in \mathbb{N} </math> s.t. w is defined at <math>i \leftrightarrow i < n</math> Uniquness)<br> Suppose that <math>\exist n,\,\, m</math> s.t. both satisfy the condition for the string <math>w</math>.<br> That means, w is defined at position <math>i</math> if and only if <math>(i < n) \land (i < m)</math>.<br> By definition, <math>\{i \in \mathbb{N}|i < n\}</math> and <math>\{i \in \mathbb{N}|i < m\}</math> are both domain of <math>w</math>, which means they are same set.<br> So the only way that <math>\{i \in \mathbb{N}|i < n\}</math> and <math>\{i \in \mathbb{N}|i < m\}</math> are same is their endpoints are same. Therefore, <math>n = m</math>. Hence, there exists a unique natural number <math>n</math> with the desired property. ==Ex. 2== Existence)<br> By definition, the domain of <math>w</math> is the finite initial segment of <math>\mathbb{N}</math>.<br> If the domain is <math>\empty</math>, then there is no position <math>i \in \mathbb{N}</math> where the <math>w</math> is defined.<br> In this situation, the length of the string <math>w</math> is 0.<br> Hence, there is a string <math>w</math> s.t. <math>|w| = 0</math>. Uniquness)<br> Suppose that there is two sets <math>u,\,\, v</math> s.t. <math>|u| = 0,\,\, |v| = 0</math>.<br> Then <math>u,\,\, v</math> are not defined at any index, so both are empty relation, subset of <math>\mathbb{N} \times \Sigma</math>.<br> So <math>u,\,\, v</math> are both empty, which means <math>u = v</math>. Hence, there is the a unique empty string <math>w</math> s.t. <math>|w| = 0</math>, and we can define <math>\epsilon</math> as the empty string <math>w</math> ==Ex. 3== Let <math>w</math> be any string over an <math>\Sigma</math>.<br> Existence)<br> By the definition of <math>w</math>, <math>w</math> is defined at any position i s.t. <math>(i \in \mathbb{N}) \land (i \in |w|)</math>.<br> Therefore, if <math>i < |w| </math>, then <math>\exist x \in \Sigma. (i,x)\in w</math>. Uniquness)<br> By the definition of <math>w</math>, relation <math>w \subseteq \mathbb{N} \times \Sigma</math> is partial function.<br> So there is only one output <math>x \in \Sigma</math> when i is given s.t. <math>i < |w| \land i \in \mathbb{N}</math>. Hence, For all strings <math>w</math> and for all <math>i \in \mathbb{N}</math>, if <math>i < |w|</math>, then there exists a unique <math>x \in \Sigma</math> s.t. <math>(i, x) \in w</math>. ==Ex. 4== Existence)<br> <math>|w| = 1</math> means that the domain of <math>w</math> is <math>\{1\}</math>.<br> So, let relation <math>w</math> be <math>w = \{(1, x)\} \subseteq \mathbb{N} \times \Sigma </math>, s.t. <math>x \in \Sigma</math>.<br> First, <math>w</math> is a partial function, since for the input 1, there is only one output value.<br> Second, the domain of <math>w</math> is <math>\{1\}</math>, which is the finite initial segment of <math>\mathbb{N}</math>. Hence, there is <math>w</math> which satisfy given proposition. Uniquness)<br> Suppose <math>u,\,\,v</math> are string, and <math>(|u|=|v|=1)\land (u</math>@<math>0 = v</math>@<math>0 = x, s.t. x \in \Sigma)</math> Then, the domain of both string is <math>\{1\}</math>, and the alphabet corresponding to index 0 is <math>x</math> for both string. Hence, <math>u = v = \{(1, x)\}</math>. Thus, for every <math>x \in \Sigma</math>, there exists a unique string <math>w</math> s.t. <math>|w|=1</math> and <math>w</math>@<math>0=x</math>. ==Ex. 5== <math>uv = \{(i,x)|(i,x)\in u\} \cup \{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in v\}</math> ==Ex. 6== (a)<br> Let <math>\epsilon = \empty</math>.<br> By the definition, <math>u\epsilon = \{(i,x)|(i,x)\in u\} \cup \{(</math><math>|</math><math>u</math><math>|</math><math>+j,y)|(j,y)\in \empty\} = \{(i,x)|(i,x)\in u\} \cup \empty = \{(i,x)|(i,x)\in u\} = u</math><br> In the same way, <math>\epsilon u = \{(i,x)|(i,x)\in \empty\} \cup \{(</math><math>|</math><math>\empty</math><math>|</math><math>+j,y)|(j,y)\in u\} = \empty \cup \{(j,y)|(j,y)\in u\} = \{(j,y)|(j,y)\in u\} = u</math> (b)<br> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math> <math></math>
연습장
문서로 돌아갑니다.
둘러보기
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록